Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Adv Radiat Oncol ; 9(3): 101393, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38292887

ABSTRACT

Purpose: Our purpose was to determine and model the dose-response relations of different parts of the pelvis regarding the endpoint of hematocrit level drop after pelvic radiation therapy (RT). Methods and Materials: Two hundred and twenty-one patients treated with RT for prostate adenocarcinoma between 2014 and 2016 were included. All patients had complete blood counts collected at baseline and 3 months post-RT. The net difference of hematocrit level post-RT versus baseline was calculated, and the level of the 15th percentiles defined the thresholds of response in each case. The doses to 8 different pelvic structures were derived and fitted to the hematocrit levels using the relative seriality normal tissue complication probability model and the biologically equivalent uniform dose (D=). Results: Pelvic structures that correlated with significant decreases in hematocrit were the os coxae bilaterally superior to the acetabulum (OCUB), the total os coxae bilaterally, and the bone volume of the whole pelvis. The structure showing the highest correlation was OCUB with a maximum area under the curve (AUC) of 0.74. For V20 Gy < 30% the odds ratio was 9.8 with 95% CI of 2.9 to 32.9. For mean dose (Dmean) to OCUB, an AUC of 0.73 was observed where the dose threshold was 23 Gy and the odds ratio was 2.7 and 95% CI 1.3 to 5.6. The values for the D50, γ, and s parameters of the relative seriality model were 26.9 Gy (25.9-27.9), 1.3 (1.2-2.2), and 0.12 (0.10-0.83), respectively. The AUC of D= was 0.73 and patients with D= to OCUB ≥ 27 Gy had 8.2 times higher rate of significant hematocrit drop versus <27 Gy. Conclusions: These findings confirm the association of radiation-induced damage to pelvic bone marrow with a drop in hematocrit. A threshold of V20 Gy < 30%, Dmean < 23 Gy, or D= < 27 Gy to OCUB may significantly reduce the risk for this endpoint.

2.
J Appl Clin Med Phys ; 25(2): e14173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37858985

ABSTRACT

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.


Subject(s)
Electrons , Particle Accelerators , Humans , Radiotherapy Dosage , Radiometry , Radiotherapy Planning, Computer-Assisted , Water
3.
Med Phys ; 51(2): 898-909, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127972

ABSTRACT

BACKGROUND: Radiotherapy dose predictions have been trained with data from previously treated patients of similar sites and prescriptions. However, clinical datasets are often inconsistent and do not contain the same number of organ at risk (OAR) structures. The effects of missing contour data in deep learning-based dose prediction models have not been studied. PURPOSE: The purpose of this study was to investigate the impacts of incomplete contour sets in the context of deep learning-based radiotherapy dose prediction models trained with clinical datasets and to introduce a novel data substitution method that utilizes automated contours for undefined structures. METHODS: We trained Standard U-Nets and Cascade U-Nets to predict the volumetric dose distributions of patients with head and neck cancers (HNC) using three input variations to evaluate the effects of missing contours, as well as a novel data substitution method. Each architecture was trained with the original contour (OC) inputs, which included missing information, hybrid contour (HC) inputs, where automated OAR contours generated in software were substituted for missing contour data, and automated contour (AC) inputs containing only automated OAR contours. 120 HNC treatments were used for model training, 30 were used for validation and tuning, and 44 were used for evaluation and testing. Model performance and accuracy were evaluated with global whole body dose agreement, PTV coverage accuracy, and OAR dose agreement. The differences in these values between dataset variations were used to determine the effects of missing data and automated contour substitutions. RESULTS: Automated contours used as substitutions for missing data were found to improve dose prediction accuracy in the Standard U-Net and Cascade U-Net, with a statistically significant difference in some global metrics and/or OAR metrics. For both models, PTV coverage between input variations was unaffected by the substitution technique. Automated contours in HC and AC datasets improved mean dose accuracy for some OAR contours, including the mandible and brainstem, with a greater improvement seen with HC datasets. Global dose metrics, including mean absolute error, mean error, and percent error were different for the Standard U-Net but not for the Cascade U-Net. CONCLUSION: Automated contours used as a substitution for contour data improved prediction accuracy for some but not all dose prediction metrics. Compared to the Standard U-Net models, the Cascade U-Net achieved greater precision.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Humans , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Software
4.
J Appl Clin Med Phys ; 23(9): e13715, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35985698

ABSTRACT

INTRODUCTION: Numerous studies have proven the Monte Carlo method to be an accurate means of dose calculation. Although there are several commercial Monte Carlo treatment planning systems (TPSs), some clinics may not have access to these resources. We present a method for routine, independent patient dose calculations from treatment plans generated in a commercial TPS with our own Monte Carlo model using free, open-source software. MATERIALS AND METHODS: A model of the Elekta Versa HD linear accelerator was developed using the EGSnrc codes. A MATLAB script was created to take clinical patient plans and convert the DICOM RTP files into a format usable by EGSnrc. Ten patients' treatment plans were exported from the Monaco TPS to be recalculated using EGSnrc. Treatment simulations were done in BEAMnrc, and doses were calculated using Source 21 in DOSXYZnrc. Results were compared to patient plans calculated in the Monaco TPS and evaluated in Verisoft with a gamma criterion of 3%/2 mm. RESULTS: Our Monte Carlo model was validated within 1%/1-mm accuracy of measured percent depth doses and profiles. Gamma passing rates ranged from 82.1% to 99.8%, with 7 out of 10 plans having a gamma pass rate over 95%. Lung and prostate patients showed the best agreement with doses calculated in Monaco. All statistical uncertainties in DOSXYZnrc were less than 3.0%. CONCLUSION: A Monte Carlo model for routine patient dose calculation was successfully developed and tested. This model allows users to directly recalculate DICOM RP files containing patients' plans that have been exported from a commercial TPS.


Subject(s)
Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Algorithms , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Software
5.
Phys Med Biol ; 67(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35226890

ABSTRACT

Objective. The aim of this work is an AI based approach to reduce the volume effect of ionization chambers used to measure high energy photon beams in radiotherapy. In particular for profile measurements, the air-filled volume leads to an inaccurate measurement of the penumbra.Approach. The AI-based approach presented in this study was trained with synthetic data intended to cover a wide range of realistic linear accelerator data. The synthetic data was created by randomly generating profiles and convolving them with the lateral response function of a Semiflex 3D ionization chamber. The neuronal network was implemented using the open source tensorflow.keras machine learning framework and a U-Net architecture. The approach was validated on three accelerator types (Varian TrueBeam, Elekta VersaHD, Siemens Artiste) at FF and FFF energies between 6 MV and 18 MV at three measurement depths. For each validation, a Semiflex 3D measurement was compared against a microDiamond measurement, and the AI processed Semiflex 3D measurement was compared against the microDiamond measurement.Main results. The AI approach was validated with dataset containing 306 profiles measured with Semiflex 3D ionization chamber and microDiamond. In 90% of the cases, the AI processed Semiflex 3D dataset agrees with the microDiamond dataset within 0.5 mm/2% gamma criterion. 77% of the AI processed Semiflex 3D measurements show a penumbra difference to the microDiamond of less than 0.5 mm, 99% of less than 1 mm.Significance. This AI approach is the first in the field of dosimetry which uses synthetic training data. Thus, the approach is able to cover a wide range of accelerators and the whole specified field size range of the ionization chamber. The application of the AI approach offers an quality improvement and time saving for measurements in the water phantom, in particular for large field sizes.


Subject(s)
Artificial Intelligence , Radiation Oncology , Machine Learning , Phantoms, Imaging , Photons/therapeutic use
6.
J BUON ; 26(4): 1683, 2021.
Article in English | MEDLINE | ID: mdl-34565034

ABSTRACT

PURPOSE: To determine the severity of the effects on VMAT dose calculations caused by varying statistical uncertainties (SU) per control point in a Monte Carlo based treatment planning system (TPS) and to assess the impact of the uncertainty during dose volume histogram (DVH) evaluation. METHODS: For this study, 13 archived patient plans were selected for recalculation. Treatment sites included prostate, lung, and head and neck. These plans were each recalculated five times with varying uncertainty levels using Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC dose calculation algorithm. The statistical uncertainty per control point ranged from 2 to 10% at intervals of 2%, while the grid spacing was set at 3 mm for all calculations. Indices defined by the RTOG describing conformity, coverage, and homogeneity were recorded for each recalculation. RESULTS: For all indices tested, one-way ANOVA tests failed to reject the null hypothesis that there is no significant difference between SU levels (p>0.05). Using the Bland-Altman analysis method, it was determined that we can expect the indices (with the exception of CIRTOG) to be within 1% of the lowest uncertainty calculation when calculating at 4% SU per control point. Beyond that, we can expect the indices to be within 3% of the lowest uncertainty calculation. CONCLUSION: Increasing the SU per control point exponentially decreased the amount of time required for dose calculations, while creating minimal observable differences in DVHs and isodose lines.


Subject(s)
Monte Carlo Method , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated , Uncertainty , Algorithms , Humans , Radiotherapy Dosage
7.
J Cancer Res Ther ; 17(4): 870-874, 2021.
Article in English | MEDLINE | ID: mdl-34528534

ABSTRACT

AIM: The aim of this study was to measure and compare the output factor (OF) of a CyberKnife Robotic Radiosurgery System with eight different small field detectors and validate with Technical Report Series (TRS) report 483. BACKGROUND: Accurate dosimetry of CyberKnife system is limited due to the challenges in small field dosimetry. OF is a vital dosimetric parameter used in the photon beam modeling and any error would affect the dose calculation accuracy. MATERIALS AND METHODS: In this study, the OF was measured with eight different small-field detectors for the 12 IRIS collimators at 800 mm SAD setup at 15 mm depth. The detectors used were PTW 31016 PinPoint 3D, IBA PFD shielded diode, IBA EFD unshielded diode, IBA SFD unshielded diode (stereotactic), PTW 60008 shielded diode, PTW 60012 unshielded diode, PTW 60018 unshielded diode (stereotactic), and PTW 60019 CVD diamond detector. OF was obtained after correcting for field output correction factors from IAEA TRS No. 483. RESULTS: The field OFs in CyberKnife are derived from the measured data by applying the correction factors from Table 23 in TRS 483 for the eight small field detectors. These field OFs matched within 2% of peer-reviewed published values. The range and standard deviation showed a decreasing trend with collimator diameter. CONCLUSION: The field OF obtained after applying the appropriate correction factor from TRS 483 matched well with the peer-reviewed published OFs. The inter-detector variation showed a decreasing trend with increasing collimator field size. This study gives physicists confidence in measuring field OFs while using small field detectors mentioned in this work.


Subject(s)
Monte Carlo Method , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiosurgery/instrumentation , Robotic Surgical Procedures/instrumentation , Humans
8.
J Appl Clin Med Phys ; 22(10): 36-44, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34432944

ABSTRACT

PURPOSE: To develop a simplified aluminum compensator system for total body irradiation (TBI) that is easy to assemble and modify in a short period of time for customized patient treatments. METHODS: The compensator is composed of a combination of 0.3 cm thick aluminum bars, two aluminum T-tracks, spacers, and metal bolts. The system is mounted onto a plexiglass block tray. The design consists of 11 fixed sectors spanning from the patient's head to feet. The outermost sectors utilize 7.6 cm wide aluminum bars, while the remaining sectors use 2.5 cm wide aluminum bars. There is a magnification factor of 5 from the compensator to the patient treatment plane. Each bar of aluminum is interconnected at each adjacent sector with a tongue and groove arrangement and fastened to the T-track using a metal washer, bolt, and nut. Inter-bar leakage of the compensator was tested using a water tank and diode. End-to-end measurements were performed with an ion chamber in a solid water phantom and also with a RANDO phantom using internal and external optically stimulated luminescent detectors (OSLDs). In-vivo patient measurements from the first 20 patients treated with this aluminum compensator were compared to those from 20 patients treated with our previously used lead compensator system. RESULTS: The compensator assembly time was reduced to 20-30 min compared to the 2-4 h it would take with the previous lead design. All end-to-end measurements were within 10% of that expected. The median absolute in-vivo error for the aluminum compensator was 3.7%, with 93.8% of measurements being within 10% of that expected. The median error for the lead compensator system was 5.3%, with 85.1% being within 10% of that expected. CONCLUSION: This design has become the standard compensator at our clinic. It allows for quick assembly and customization along with meeting the Task Group 29 recommendations for dose uniformity.


Subject(s)
Aluminum , Whole-Body Irradiation , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
9.
J Appl Clin Med Phys ; 22(7): 198-207, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085384

ABSTRACT

PURPOSE: For mobile lung tumors, four-dimensional computer tomography (4D CT) is often used for simulation and treatment planning. Localization accuracy remains a challenge in lung stereotactic body radiation therapy (SBRT) treatments. An attractive image guidance method to increase localization accuracy is 4D cone-beam CT (CBCT) as it allows for visualization of tumor motion with reduced motion artifacts. However, acquisition and reconstruction of 4D CBCT differ from that of 4D CT. This study evaluates the discrepancies between the reconstructed motion of 4D CBCT and 4D CT imaging over a wide range of sine target motion parameters and patient waveforms. METHODS: A thorax motion phantom was used to examine 24 sine motions with varying amplitudes and cycle times and seven patient waveforms. Each programmed motion was imaged using 4D CT and 4D CBCT. The images were processed to auto segment the target. For sine motion, the target centroid at each phase was fitted to a sinusoidal curve to evaluate equivalence in amplitude between the two imaging modalities. The patient waveform motion was evaluated based on the average 4D data sets. RESULTS: The mean difference and root-mean-square-error between the two modalities for sine motion were -0.35 ± 0.22 and 0.60 mm, respectively, with 4D CBCT slightly overestimating amplitude compared with 4D CT. The two imaging methods were determined to be significantly equivalent within ±1 mm based on two one-sided t tests (p < 0.001). For patient-specific motion, the mean difference was 1.5 ± 2.1 (0.8 ± 0.6 without outlier), 0.4 ± 0.3, and 0.8 ± 0.6 mm for superior/inferior (SI), anterior/posterior (AP), and left/right (LR), respectively. CONCLUSION: In cases where 4D CT is used to image mobile tumors, 4D CBCT is an attractive localization method due to its assessment of motion with respect to 4D CT, particularly for lung SBRT treatments where accuracy is paramount.


Subject(s)
Lung Neoplasms , Radiosurgery , Computers , Cone-Beam Computed Tomography , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Phantoms, Imaging
10.
J Appl Clin Med Phys ; 22(4): 172-183, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33739569

ABSTRACT

PURPOSE: Studies have evaluated the viability of using open-face masks as an immobilization technique to treat intracranial and head and neck cancers. This method offers less stress to the patient with comparable accuracy to closed-face masks. Open-face masks permit implementation of surface guided radiation therapy (SGRT) to assist in positioning and motion management. Research suggests that changes in patient facial expressions may influence the SGRT system to generate false positional corrections. This study aims to quantify these errors produced by the SGRT system due to face motion. METHODS: Ten human subjects were immobilized using open-face masks. Four discrete SGRT regions of interest (ROIs) were analyzed based on anatomical features to simulate different mask openings. The largest ROI was lateral to the cheeks, superior to the eyebrows, and inferior to the mouth. The smallest ROI included only the eyes and bridge of the nose. Subjects were asked to open and close their eyes and simulate fear and annoyance and peak isocenter shifts were recorded. This was performed in both standard and SRS specific resolutions with the C-RAD Catalyst HD system. RESULTS: All four ROIs analyzed in SRS and Standard resolutions demonstrated an average deviation of 0.3 ± 0.3 mm for eyes closed and 0.4 ± 0.4 mm shift for eyes open, and 0.3 ± 0.3 mm for eyes closed and 0.8 ± 0.9 mm shift for eyes open. The average deviation observed due to changing facial expressions was 1.4 ± 0.9 mm for SRS specific and 1.6 ± 1.6 mm for standard resolution. CONCLUSION: The SGRT system can generate false positional corrections for face motion and this is amplified at lower resolutions and smaller ROIs. These errors should be considered in the overall tolerances and treatment plan when using open-face masks with SGRT and may warrant additional radiographic imaging.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Image-Guided , Humans , Masks , Motion , Radiography
11.
Appl Radiat Isot ; 171: 109638, 2021 May.
Article in English | MEDLINE | ID: mdl-33631502

ABSTRACT

Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02. DEF is shown to increase with increasing concentration of gold and increasing energy in the megavoltage energy range. The largest difference in measured vs. simulated DEF across all data sets was 0.3%, showing good agreement.

12.
Med Phys ; 48(5): e44-e64, 2021 May.
Article in English | MEDLINE | ID: mdl-33260251

ABSTRACT

The era of real-time radiotherapy is upon us. Robotic and gimbaled linac tracking are clinically established technologies with the clinical realization of couch tracking in development. Multileaf collimators (MLCs) are a standard equipment for most cancer radiotherapy systems, and therefore MLC tracking is a potentially widely available technology. MLC tracking has been the subject of theoretical and experimental research for decades and was first implemented for patient treatments in 2013. The AAPM Task Group 264 Safe Clinical Implementation of MLC Tracking in Radiotherapy Report was charged to proactively provide the broader radiation oncology community with (a) clinical implementation guidelines including hardware, software, and clinical indications for use, (b) commissioning and quality assurance recommendations based on early user experience, as well as guidelines on Failure Mode and Effects Analysis, and (c) a discussion of potential future developments. The deliverables from this report include: an explanation of MLC tracking and its historical development; terms and definitions relevant to MLC tracking; the clinical benefit of, clinical experience with and clinical implementation guidelines for MLC tracking; quality assurance guidelines, including example quality assurance worksheets; a clinical decision pathway, future outlook and overall recommendations.


Subject(s)
Radiation Oncology , Robotics , Humans , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
13.
J Appl Clin Med Phys ; 21(10): 40-47, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32779832

ABSTRACT

PURPOSE: To create an open-source visualization program that allows one to find potential cone collisions while planning intracranial stereotactic radiosurgery cases. METHODS: Measurements of physical components in the treatment room (gantry, cone, table, localization stereotactic radiation surgery frame, etc.) were incorporated into a script in MATLAB (MathWorks, Natick, MA) that produces three-dimensional visualizations of the components. A localization frame, used during simulation, fully contains the patient. This frame was used to represent a safety zone for collisions. Simple geometric objects are used to approximate the simulated components. The couch is represented as boxes, the gantry head and cone are represented by cylinders, and the patient safety zone can be represented by either a box or ellipsoid. These objects are translated and rotated based upon the beam geometry and the treatment isocenter to mimic treatment. A simple graphical user interface (GUI) was made in MATLAB (compatible with GNU Octave) to allow users to pass the treatment isocenter location, the initial and terminal gantry angles, the couch angle, and the number of angular points to visualize between the initial and terminal gantry angle. RESULTS: The GUI provides a fast and simple way to discover collisions in the treatment room before the treatment plan is completed. Twenty patient arcs were used as an end-to-end validation of the system. Seventeen of these appeared the same in the software as in the room. Three of the arcs appeared closer in the software than in the room. This is due to the treatment couch having rounded corners, whereas the software visualizes sharp corners. CONCLUSIONS: This simple GUI can be used to find the best orientation of beams for each patient. By finding collisions before a plan is being simulated in the treatment room, a user can save time due to replanning of cases.


Subject(s)
Radiosurgery , Computer Simulation , Humans , Imaging, Three-Dimensional , Radiotherapy Planning, Computer-Assisted , Software
15.
J Appl Clin Med Phys ; 21(9): 107-115, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681753

ABSTRACT

PURPOSE: Single-isocenter multiple brain metastasis stereotactic radiosurgery is an efficient treatment modality increasing in clinical practice. The need to provide accurate, patient-specific quality assurance (QA) for these plans is met by several options. This study reviews some of these options and explores the use of the Octavius 4D as a solution for patient-specific plan quality assurance. METHODS: The Octavius 4D Modular Phantom (O4D) with the 1000 SRS array was evaluated in this study. The array consists of 977 liquid-filled ion chambers. The center 5.5 cm × 5.5 cm area has a detector spacing of 2.5 mm. The ability of the O4D to reconstruct three-dimensional (3D) dose was validated against a 3D gel dosimeter, ion chamber, and film measurements. After validation, 15 patients with 2-11 targets had their plans delivered to the phantom. The criteria used for the gamma calculation was 3%/1 mm. The portion of targets which were measurable by the phantom was countable. The accompanying software compiled the measured doses allowing each target to be counted from the measured dose distribution. RESULTS: Spatial resolution was sufficient to verify the high dose distributions characteristic of SRS. Amongst the 15 patients there were 74 targets. Of the 74 targets, 61 (82%) of them were visible on the measured dose distribution. The average gamma passing rate was 99.3% (with sample standard deviation of 0.68%). CONCLUSIONS: The high resolution provided by the O4D with 1000 SRS board insert allows for very high-resolution measurement. This high resolution in turn can allow for high gamma passing rates. The O4D with the 1000 SRS array is an acceptable method of performing quality assurance for single-isocenter multiple brain metastasis SRS.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/surgery , Humans , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software
16.
Phys Med Biol ; 65(13): 135007, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32434159

ABSTRACT

Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.2) and compared with experimental results obtained using Burlin cavity theory formalism. The Ir-192 source is verified using TG-43 parameters and dose enhancement factors (DEFs) from GNPs are simulated for three different mass percentages of gold in the GNP solution. These results are compared to DEFs previously reported experimentally by our group (Bassiri et al 2019 Med. Phys.) for a GNP-containing volume in an apparatus designed in-house to measure dose enhancement with GNPs for high dose rate (HDR) Ir-192 brachytherapy. An HDR Ir-192 Microselectron v2 r HDR brachytherapy source was modeled using MCNP6.2 using the TG-43 formalism in water. Anisotropy and radial dose function were verified against known values. An apparatus designed to measure dose enhancement to a 0.75 cm3 volume of GNPs from an Ir-192 brachytherapy seed with average energy of 0.38 MeV was built in-house and modeled using MCNP6.2. Burlin cavity correction factors were applied to experimental measurements. The macroscopic DEF was calculated for GNPs of size 30 nm at mass percentages of gold of 0.28%, 0.56% and 0.77%, using the repeating structures capability of MCNP6.2. DEF was calculated by dividing dose to the GNP solution by dose to water in the same volume. The radial dose function and anisotropy factor values at varying angles and distances were accurate when compared against known values. DEFs of 1.018 ± 0.003, 1.031 ± 0.003, and 1.041 ± 0.003 for GNP solutions containing mass percent of gold of 0.28%, 0.56% and 0.77%, respectively, were computed. These DEFs were within 2% of experimental values with Burlin cavity correction factors applied for all three mass percentages of gold.


Subject(s)
Brachytherapy/methods , Gold/chemistry , Iridium Radioisotopes/therapeutic use , Metal Nanoparticles , Monte Carlo Method , Radiation Dosage , Anisotropy , Humans , Radiotherapy Dosage , Water
17.
J Appl Clin Med Phys ; 21(3): 94-107, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32101368

ABSTRACT

PURPOSE: Dose-volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. METHODS: A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient-specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. RESULTS: The complication-free tumor control probability, P+ , has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites: brain (-3.9% ± 5.8%), head-neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). CONCLUSION: Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification.


Subject(s)
Models, Biological , Neoplasms/radiotherapy , Organs at Risk/radiation effects , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
18.
J Med Phys ; 45(3): 143-147, 2020.
Article in English | MEDLINE | ID: mdl-33487926

ABSTRACT

PURPOSE: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. MATERIALS AND METHODS: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. RESULTS: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. CONCLUSION: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.

19.
J Med Phys ; 45(3): 156-167, 2020.
Article in English | MEDLINE | ID: mdl-33487928

ABSTRACT

BACKGROUND: The increased use of deformable registration algorithms in clinical practice has also increased the need for their validation. AIMS AND OBJECTIVES: The purpose of the study was to investigate the quality, accuracy, and plausibility of three commercial image registration algorithms for 4-dimensional computed tomography (4DCT) datasets using various similarity measures. MATERIALS AND METHODS: 4DCT datasets were acquired for 10 lung cancer patients. 23 similarity measures were used to evaluate image registration quality. To ensure selected method's invertibility and assess resultant mechanical stress, the determinant of the Jacobian for the displacement field and 3-D Eulerian strain tensor were calculated. All the measures and calculations were applied on to extended deformable multi pass (EXDMP) and deformable multi pass (DMP) methods. RESULTS: The results indicate the same trend for several of the studied measures. The Jacobian determinant values were always positive for the DMP method. The Eulerian strain tensor had smaller values for the DMP method than EXDMP in all of the studied cases. The negative values of the Jacobian determinant point to non-physical behavior of the EXDMP method. The Eulerian strain tensor values indicate less tissue strain for the DMP method. Large differences were also observed in the results between complete and cropped datasets (coefficient of determination: 0.55 vs. 0.93). CONCLUSION: A number of error and distance measures showed the best performance among the tested measures. The evaluated measures might detect CT dataset differences with higher precision if the analysis is restricted to a smaller volume.

20.
J BUON ; 25(6): 2731-2736, 2020.
Article in English | MEDLINE | ID: mdl-33455120

ABSTRACT

PURPOSE: To compare the accuracy of two separate models when calculating dose distributions in patients undergoing stereotactic radiosurgery (SRS) treatment for brain cancer. METHODS: For this comparison, two dose calculation algorithms were evaluated on two different treatment planning systems (TPS): Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC algorithm and Brainlab's iPlan Pencil Beam algorithm. The DICOM files of 11 patients with a total of 19 targets were exported from iPlan and then imported into Monaco to be recalculated. Using the dose distributions of the original (pencil beam/PB) and recalculated (Monte Carlo/MC) plans, four indices for plan quality were evaluated: coverage (Q), conformity index (CIRTOG), homogeneity index (HI), and gradient index (GI). RESULTS: There was a significant difference in the CIRTOG and HI between the two TPS calculations. However, the magnitude of these differences is often not substantial enough to cause the plan to fall outside of RTOG protocol deviation limits. Only 3 of the 19 targets had CIRTOG values which moved to a new level of deviation, and these targets were unique in terms of size (<0.1 cm3). CONCLUSION: It was found that the difference between systems is often not enough to cause the plan to fall outside of RTOG protocol deviation limits. This is an indication that a PB-based treatment planning system is sufficient for the mostly homogeneous conditions of intracranial SRS planning when the target is larger than 0.1 cm3. If below 0.1 cm3, the prescribing physician may need to evaluate TPS differences.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Monte Carlo Method , Radiosurgery/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...